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ABSTRACT

3D human pose estimation is an important and challenging
task in computer vision. In this paper, we propose a method
to estimate 3D human pose from RGB-D images. We adopt
a 2D pose estimator to extract color features from the RGB
image. The color features are integrated with the depth image
in the form of point cloud. To fully exploit geometric infor-
mation, we design a 3D learning module to extract point-wise
features. To take advantage of local information as well as
facilitate the convergence of the model, we design a dense
prediction module. It estimates the offset vectors and close-
ness scores from points to target keypoints. The point-wise
estimations are weighted and summed up to a final 3D pose.
Experimental results show that our method achieves state-of-
the-art performance on MHAD and SURREAL datasets.

Index Terms— 3D human pose estimation, RGB-D,
point cloud, dense prediction

1. INTRODUCTION

3D human pose estimation aims to localize human body key-
points in 3D space. It is a fundamental and important com-
puter vision task with diverse applications, including action
recognition, human-robot interaction, and sports analysis.

Most recent approaches are based on a monocular RGB
image. They are faced with challenges including depth ambi-
guity and the highly nonlinear 2D-to-3D mapping [1, 2, 3, 4].
Another drawback of RGB-based methods is that they have
difficulty in estimating an absolute localization, which lim-
its its application scenarios. Though some recent approaches
[5, 6] try to predict absolute 3D poses by exploiting scale cues
from 2D images, the results are just approximations.

To obtain absolute pose in real-world metric space, many
algorithms take depth images as input. Shotton et al.[7] first
segment body parts by a random forest, then localize 3D key-
points. Moon et al.[8] transform the depth map into a vox-
elized grid and perform a voxel-to-voxel prediction by a 3D
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CNN. One major defect of this approach is its high complex-
ity of time and space. To reduce time consumption, Xiong et
al.[9] propose an anchor-based method that directly applies
2D convolution to depth images. Point cloud is another 3D
data format. In 3D hand pose estimation, Ge et al.[10, 11]
regress hand joints from point clouds using PointNet [12, 13].

The RGB-only and depth-only methods have their respec-
tive pros and cons, which motivates us to combine these two
kinds of methods. In addition, the advent of low-cost RGB-D
sensors also makes it practical. Equipped with depth infor-
mation, we are able to obtain absolute 3D pose and handle
the problem of depth ambiguity. Depth information also fa-
cilitates 2D-to-3D mapping. Correspondingly, the color and
texture information in the RGB image is crucial to keypoint
localization. Moreover, the model can benefit from various
RGB datasets including outdoor scenes. Despite the above
advantages, RGBD-based methods have not been extensively
studied [14, 15], probably due to the lack of RGB-D datasets.

In this work, we propose a method to regress 3D human
keypoints from RGB-D images. The core of our approach is
to integrate color features into the 3D point cloud. There are
three reasons to estimate 3D pose based on point cloud: (1)
learning in 3D space can better exploit geometric information;
(2) comparing to voxelized grid, point cloud brings less infor-
mation loss; (3) recent point-based 3D deep learning methods
[13, 16] make it possible to extract fine-grained features from
point clouds.

As depicted in Fig. 1, our model consists of three mod-
ules. A 2D pose estimator first generates heatmaps from the
RGB image. The heatmaps act as a preliminary yet useful
prediction that contributes to 3D estimation in later stages.
Next, the 2D fusion module fuses heatmaps with the depth
image and outputs a point cloud where each point is endowed
with a color feature vector. The downsampled points are then
fed into a 3D learning module to generate point-wise features.
Finally, the model makes dense predictions, i.e. offset vectors
and closeness scores from each point to target keypoints. The
final result is voted by all points.

To summarize, the contributions of this work include:

• We extend an effective 3D neural network to 3D human
pose estimation task.

• To better utilize local features, we design a point-wise
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Fig. 1. The pipeline of our approach. The input to our model is a pair of aligned RGB and depth images. Color features
extracted from the RGB image are fused with depth information. They are converted into a point cloud and passed through the
3D learning module to generate point-wise features. The final 3D pose is voted by all points based on dense prediction results.

voting mechanism that predicts closeness scores and
offset vectors from each point to target keypoints.

• We demonstrate the state-of-the-art performance on
two public datasets, MHAD [17] and SURREAL [18].

2. METHOD

Our goal is to estimate 3D human pose from a pair of aligned
RGB image R∈ RH×W×3 and depth image D∈ RH×W×1.
By combining color features from the RGB image and ge-
ometry features from the depth image, the model is able to
localize J human keypoints K = (k1,k2, ...,kJ) ∈ R3×J in
the camera coordinate system. Fig. 1 illustrates the pipeline
of our method. Details are described below.

2.1. 2D Fusion Module

Color feature extraction. With the release of diverse large-
scale datasets, the state-of-the-art 2D pose estimation meth-
ods are able to generate accurate and robust results. Hence an
off-the-shelf 2D pose estimator is adopted to exploit color and
texture features from the RGB image. Considering both accu-
racy and speed, we choose to use SimpleBaseline [19] which
consists of ResNet-50 [20] and a series of deconvolutional
layers. It outputs a set of heatmaps H∈ RH′×W ′×J where
the value of each pixel indicates the presence likelihood of a
specific keypoint.
Color-depth fusion. The heatmaps are first upsampled to the
original image size H ×W by bilinear interpolation. Then
each pixel on the heatmap is matched with its corresponding
pixel on the depth map.

2.2. 3D Learning Module

This module aims to learn geometric features and further ex-
tract color features in 3D space. To better utilize the geomet-
ric information encoded in depth images, we transform the

depth image to point cloud using camera intrinsic parameters.
Before being fed to the downstream module, the point cloud
is randomly downsampled to a fixed size N . It can be repre-
sented by a N × (3+J) matrix, where each point has its own
XYZ coordinate plus a J-dim vector of color feature.
Point-wise feature extraction. We take advantage of PVCNN
[16] to exploit geometric information from the point cloud.
PVCNN is an efficient 3D deep learning method which uses
a multi-layer perceptron (MLP) to model fine-grained point-
wise feature and a 3D CNN to capture coarse-grained voxel-
based information. On the one hand, the coarse-grained
feature provides context information. It helps to generate
a feasible pose, since human body parts interact with each
other. On the other hand, the fine-grained feature is essential
for accurate localization. For each point, PVCNN generates
a feature vector that is embedded with context information
covering different spatial sizes.
Global-local feature fusion. Besides, the point-wise features
are passed through a global pooling layer and an MLP to ob-
tain a global feature vector. It is then tiled and concatenated to
the point-wise features. This step aims to enable every point
with the ability to “sense” the global context.

2.3. Dense Prediction Module

The point-wise features generated in the last stage provide a
premise for dense prediction. In this way, the model can take
advantage of local information to achieve accurate localiza-
tion. Dense prediction is also conducive to the convergence
of the network. Actually, we have tried a direct regression
approach, but it failed to converge.

There are two branches in the prediction module. The first
branch outputs the closeness score of each point to the target
keypoint. Specifically, it predicts whether a point is in the
neighborhood of a keypoint. Fig. 2(a) shows the neighboring
points of the left knee in red. The ground truth closeness score
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Fig. 2. The network output of the left knee. (a) Red points in-
dicate the neighboring points of the left knee. (b) Arrows in-
dicate the offsets from different points to the target keypoint.
For better visualization, only a part of vectors are visualized.

is generated as

cji =

{
1, ‖kj − pi‖2 ≤ R,

0, otherwise;
(1)

where pi is the i-th point in the point cloud, kj is the j-th
human keypoint, R is the radius of neighborhood.

Another branch calculates the offset vectors from each
point to each keypoint:

vj
i = kj − pi. (2)

In other words, every point makes a guess at the keypoint
location. Fig. 2(b) illustrates an example of the left knee.

To obtain one final output, scores from the closeness
branch serve as weight factors. Because we assume that
points close to the target keypoint tend to output more reli-
able offsets. The final keypoint location is a result of per-point
voting, which can be formulated as

k̂j =

∑N
i=1 ĉ

j
i (pi + v̂ji )∑N
i=1 ĉ

j
i

, (3)

where ĉji and v̂j stand for the predicted closeness score and
offset vector from point i to keypoint j respectively.

The loss function consists of three terms. The first term
calculates the difference between the predicted pose and the
ground truth:

LK =
1

J

J∑
j=1

H(k̂j − kj), (4)

whereH means Huber loss. We choose Huber loss instead of
MSE loss, for it is less sensitive to outliers while maintaining
strong convexity near zero. The function will focus more on
reducing small errors and help to generate a result as accurate
as possible. Huber loss is defined as

H(x) =

{
1
2x

2, x ≤ δ,
δ(|x| − 1

2δ), otherwise;
(5)

where δ is a threshold factor.
MSE loss is used to reduce closeness estimation error:

LC =
1

N

1

J

N∑
i=1

J∑
j=1

(ĉji − c
j
i )

2. (6)

To further reduce the regression error, we also supervise
the offset branch with Huber loss:

LO =
1

N

1

J

N∑
i=1

J∑
j=1

H(v̂j
i − vji ). (7)

It plays a subsidiary role to keypoint regression since it treats
offsets from different points equally regardless of their close-
ness scores.

Finally, the overall loss function is a weighted sum of the
above three terms:

L = LK + λCLC + λOLO. (8)

3. EXPERIMENTS

3.1. Experimental Setting

Datasets. Experiments are conducted on MHAD [17] and
SURREAL [18]. On MHAD, we use subjects 8, 11 for eval-
uation, and the other ten subjects for training. Only RGB-D
frames from the front view are used. To reduce redundancy,
the frame rate is downsampled to 10 FPS. On SURREAL, we
only use subset run2 and follow the original dataset partition-
ing. The frame rate is downsampled to 2 FPS. We pick 16
commonly evaluated keypoints in both datasets.
Evaluation metrics. We use MPJPEabs to measure the mean
Euclidean distance between the predicted and target absolute
coordinates. MPJPErel is also used as root-relative MPJPE.
Another metric is 3DPCK, which measures the percentage of
correctly localized keypoints. The threshold is set to 150 mm
in our experiments.

3.2. Implementation Details

RGB-D images are first cropped according to human bound-
ing boxes. We resize RGB images to a fixed size of 256×256
as input to the 2D pose estimator. We delete background pix-
els from depth images by setting a depth threshold. For color
feature extraction, we use the pretrained SimpleBaseline [19]
model and fine-tune it on MHAD and SURREAL. The 3D
learning module and the dense prediction module are trained
from scratch for 40 epochs. The learning rate is set to 0.001
initially and reduced by a factor of 2 at epochs 5, 18, 30.
We choose Adam as optimizer. The radius R of the keypoint
neighborhood is set to 200 mm. In loss function, λC = 200,
λO = 0.01. We train the 2D pose estimator and 3D mod-
ules separately. To train the 3D modules, we apply augmen-
tation to ground truth heatmaps in an attempt to simulate the
error distribution of predicted heatmaps. Similar to [6], we
first analyze the 2D detection error and then synthesize noisy
heatmaps as input to 3D modules.

3.3. Ablation Study

We first look into the impact of color information on 3D
human pose estimation. As shown in the first three rows of
Table 1, directly adding RGB values reduces the prediction
error slightly. While integrating color information in the
form of 2D heatmaps brings about a reduction of 4.56 mm
in MPJPEabs. This suggests the effectiveness of combining
color features through a 2D pose estimator.
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Table 1. Ablation study on MHAD.

Color Loss
Training
heatmap MPJPEabs

- LK + LC - 35.31
RGB LK + LC - 34.81
heatmap LK + LC GT w/ aug 30.75
heatmap LK + LC + LO GT w/ aug 29.77
heatmap LK + LC + LO GT w/o aug 33.32
heatmap LK + LC + LO prediction 35.01

Fig. 3. Qualitative results. The first row shows results on
MHAD. The second row shows results on SURREAL.

We also evaluate the impact of loss termLO. As described
in Section 2.3, it plays a subsidiary role that penalizes offset
prediction errors. Results in Table 1 prove that supervision on
offset vectors contributes to the overall performance.

As for the training strategy, we compare three different
ways to generate heatmaps. The input heatmaps to 3D mod-
ules are prediction results of the 2D pose estimator. They
are supervised during training but unsupervised during evalu-
ation. This makes the input data distribution varies at training
time and test time. As shown in the last row of Table 1, us-
ing supervised estimations from the 2D estimator produces
the worst result, which suggests that the data distribution de-
viation has a negative impact on training. By performing data
augmentation as described in Section 3.2, the distribution de-
viation is reduced, leading to the lowest MPJPEabs. This
makes our model robust to noisy 2D heatmaps.

3.4. Comparison with State-of-the-art Methods

In this section, we compare our model with state-of-the-
art methods. Additionally, we evaluate a simple method –
NaiveLifting. It directly lifts 2D pose to 3D using the depth
values at 2D landmarks. To distinguish 2D detection error
from 2D-to-3D lifting error, we also test our method with
ground truth 2D heatmaps (specified as Ours (GT)). It sets an
upper bound on our 3D modules.

Table 2 shows the comparison results on MHAD. All
methods take RGB-D images as input, except for the one pro-
posed by Shotton et al.[7]. Since there have been no protocols
for MHAD so far, the comparison may not be completely fair,
yet the results can still tell us something. Our approach pro-
duces the lowest MPJPEabs. The large error generated by
NaiveLifting probably comes from the noise in depth images

Table 2. Comparison with SOTA methods on MHAD.
Method Input MPJPEabs

Shotton et al.[7] depth 68
Makris et al.[15] RGB+depth 66
Michel et al.[21] RGB+depth 58
NaiveLifting RGB+depth 121.35
Ours RGB+depth 29.77
Ours (GT) RGB+depth 20.41

Table 3. Comparison with SOTA methods on SURREAL.
Method Input MPJPErel 3DPCK
Tung et al.[22] video+heatmap 64.4 -

Varol et al.[23]
RGB+2D pose
+segmentation 46.1 -

Wang et al.[24] RGB 37.1 97.3
Martinez et al.[4] 2D pose 70.0 89.3
NaiveLifting RGB+depth 123.1 70.3
Ours RGB+depth 19.2 99.0
Ours (GT) RGB+depth 14.3 99.8

and self-occlusion. This demonstrates that extracting features
from the whole depth image is essential.

We also compare with other methods on SURREAL. No-
tice the various inputs to different methods. We re-implement
the method proposed by Martinez et al.[4] using the publicly
released codes. Results of other methods are taken from the
corresponding papers. As shown in Table 3, our method out-
performs other methods by a large margin in MPJPErel. This
proves the effectiveness of our RGB-D combination method.
Qualitative results are shown in Fig. 3.

It is worth to note the difference between testing on
ground truth heatmaps and estimated heatmaps (the last 2
rows in Table 2 and Table 3). It mainly stems from two parts:
the data distribution deviation during training and evaluation,
and the error from 2D detection itself.

3.5. Runtime Analysis

The average inference time is 21 ms for a frame on a single
NVIDIA 2080 Ti GPU, including 10 ms for 2D detection and
11 ms for 3D regression. This reveals that our model can run
in real-time at approximately 47.6 FPS.

4. CONCLUSION

In this work, we propose a method to estimate absolute 3D
human pose from RGB-D input. Color features are first ex-
tracted by a 2D CNN and then fused with depth information.
The 3D learning module converts depth image to point cloud,
exploiting point-wise features and global features from it. We
also design a dense prediction scheme and generate the fi-
nal result by point-wise voting. Experimental results on two
datasets demonstrate the superiority of our method.
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